Using Big Data To Study Childhood Vision Disorders

David C. Musch, PhD, MPH
University of Michigan
Dept. of Ophthalmology and Visual Sciences

3rd Annual Focus on Eye Health Summit Washington, DC June 18, 2014

No Financial Interest

Big Data: a Hot Topic in the Health Care Arena

The NEW ENGLAND JOURNAL of MEDICINE

Learning from Big Health Care Data

Sebastian Schneeweiss, M.D., Sc.D.

Big Data: a Hot Topic in the Health Care Arena

JAMA Published online May 22, 2014

Opinion

VIEWPOINT

Finding the Missing Link for Big Biomedical Data

Griffin M. Weber, MD, PhD

Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts.

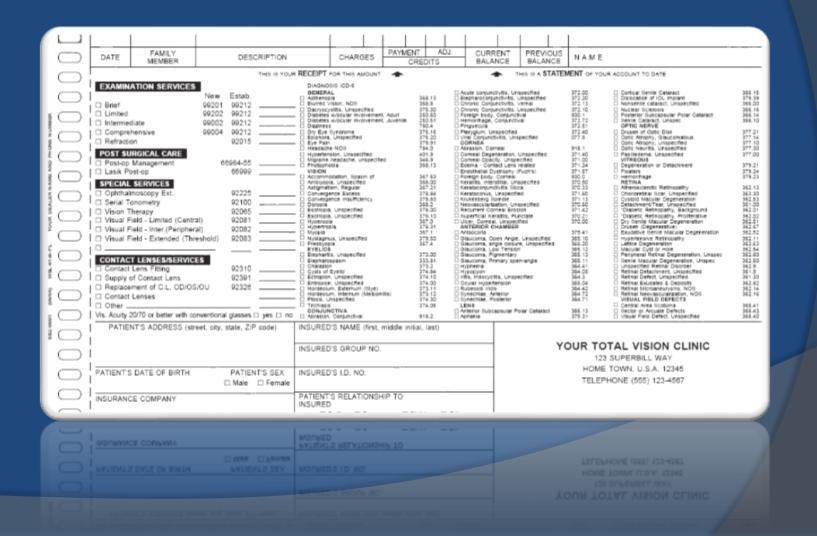
Kenneth D. Mandl, MD, MPH

Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, and Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.

Isaac S. Kohane, MD, PhD

Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, and Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.

Big Data: Definition


• Big data is a blanket term for any collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications.

(Wikipedia, accessed 11June 2014)

Examples of Big Health Care Data

- NEI: National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE): e.g., genotyping on >1,000 retinitis pigmentosa subjects
- AAO: IRIS Registry: the nation's first electronic health record (EHR)—based comprehensive eye disease database. More than 20 million patient records will soon be available at the push of a button.
- Health care claims data

Use of Health Care Claims Data In Eye Care Practice

Claims Databases

Claims Databases

United States (41 databases)

Anceta Collaborative Patient Data Warehouse Behavioral Risk Factor Surveillance System Cancer of the Prostate Strategic Urologic Research Endeavor Centers for Medicaid and Medicare Services CMS National Coverage Decisions (NCDs)

Cost-Effectiveness Analysis Registry GE Healthcare Centricity Database Health Data Interactive

Health Facts

Database

HIV/AIDS Medical Record & Case Mgmt Database

i3 InVision Data Mart (LabRx)

IMS LifeLink Health Plan Claims Database

IMS LifeLink LRx

Incidence and Prevalence Database

Inpatient acute rehab patient data

Kids' Inpatient Database

KIMS (Pfizer International Metabolic Database)

MarketScan Claims Databases

MarketScan Hospital Drug Database

MedMining (Geisinger Health System)
National Center for Health Statistics

National Health and Wellness Survey, US

Nationwide Inpatient Sample

Pediatric Inpatient and Outpatient Rehab

Pharmacist PBN Database

Premier Perspective Hospital Database

Saint Louis University Center for Outcomes
Research

SDI Patient-Level Data

Slone Survey

State Ambulatory Surgery Databases

State Emergency Department Databases

State Inpatient Databases (SID), United States

State Tobacco Activities Tracking and Evaluation System

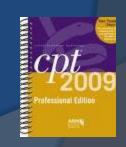
Syndicated Select, HIV

Syndicated Select, Psoriasis

Syndicated Select, Schizophrenia

United States Transplant

Varian Medical Oncology


Database Sample Size

Database	Years	Total covered lives
GE Healthcare	1996-2008	6.3 million
Market Scan	1992-2008	29.1 million
i3 Data Mart	2000-2008	39 million
5% Medicare	1991-2008	1.3 million / y (approx.)
100% Medicare	-	34 million
Pharmetrics	2000-2008	50 million

What's In These Databases?

- Demographics (e.g., age, sex, race)
- Socioeconomic data (e.g., education, income)
- Diagnoses (ICD-9CM codes)
- Procedures (CPT-4 codes)
 - Office visits, diagnostic procedures, therapeutic procedures
- Outpatient prescriptions
- Outpatient laboratory data

What's in These Databases?

- Some additional variables
 - Insurance Type
 - Medicare, Medicaid, Commercial
 - Plan Type
 - HMO, PPO, POS
 - Charges
 - Copays
 - Deductibles

Advantages of Using Claims Data

- Large (huge) sample size
- Longitudinal data
- Permits community-based comparisons
- Avoids some common biases
- Allows for study of uncommon conditions and outcomes
- Accurate information (mostly)
- Good for comparative effectiveness
- De-identified

i3 Data Mart Database (2001-2008)

Unique individuals receiving eye care	8,296,518
Encounters (eye or non-eye)	688,457,278
Outpatient prescriptions	353,764,159
Outpatient lab tests	248,559,262
OAG patients	230,371

Uncommon Conditions In Databases

Uncommon Condition	i3 Data Mart Database	Observational Series in the Literature
Endophthalmitis	In 2001 alone: 424 unique pts.	All PPVs, BPEI ,1984–2004: <u>598 cases</u>
Central retinal artery occlusion	14,397 unique pts.	Single institution, CRAO/ HRAO/ BRAO: <u>416 pts.</u>
Angle recession glaucoma	2,318 unique pts.	U.S. Eye Injury Registry, 1988–2003: 97 pts.
Granular corneal dystrophy	433 unique pts.	Mostly case reports; largest series: 10 pts.

Using Claims Data: Research Issues

- Retrospective
- Drawing inferences about other populations
- Data accuracy: proper identification/billing of condition
- Only conditions with ICD-9/CPT codes
- Lack of eye laterality information
- De-identified
- Need for validation of ICD-9/CPT codes

Validation of Eye-Related ICD-9 Codes

Condition	No. of Providers	No. of charts reviewed	Correctly documented at visit
Ocular HTN	17	97	86%
Pre-glaucoma	13	98	93%
POAG	22	100	97%
Cataract	14	102	96%
Dry AMD	21	101	93%
NPDR	10	109	92%
PDR	8	109	92%
CSME	9	104	91%

Examples of Studies Performed Using Claims Data

• Incidence & prevalence studies:

Clinical and Epidemiologic Research

Prevalence of Corneal Dystrophies in the United States: Estimates from Claims Data

David C. Musch, 1,2 Leslie M. Niziol, 1 Joshua D. Stein, 1 Roheena M. Kamyar, 1,3 and Alan Sugar 1

Invest Ophthalmol Vis Sci 2011; 52:6959-63

Examples of Studies Performed Using Claims Data

Association of treatment with serious adverse events:

SOCIOECONOMICS AND HEALTH SERVICES

SECTION EDITOR: PAUL P. LEE, MD

Association Between the Use of Glaucoma Medications and Mortality

Joshua D. Stein, MD, MS; Paula Anne Newman-Casey, MD; Leslie M. Niziol, MS; Brenda W. Gillespie, PhD; Paul R. Lichter, MD; David C. Musch, PhD, MPH

Arch Ophthalmol 2010; 128:235-40

Examples of Studies Performed Using Claims Data

• Utilization of services:

Longitudinal Trends in Resource Use in an Incident Cohort of Open-Angle Glaucoma Patients: Resource Use in Open-Angle Glaucoma

JOSHUA D. STEIN, LESLIE M. NIZIOL, DAVID C. MUSCH, PAUL P. LEE, SAMEER V. KOTAK, COLLEEN M. PETERS, AND STEVEN M. KYMES

Am J Ophthalmol 2012; 154:452-9

Summary

- Gold mine of information present in health care claims databases
- Claims data can be used to study outcomes of patients being treated for an array of ocular conditions
- Important to understand the advantages and limitations when using claims data for research purposes

Acknowledgments

RESEARCH COLLABORATORS

University of Michigan

- Joshua D. Stein, MD, MS
- Paul P. Lee, MD, JD
- Ohris Andrews, PhD
- Taylor Blachley, MS
- Leslie M. Niziol, MS
- Nidhi Talwar, MA

FINANCIAL SUPPORT

- W.K. Kellogg Foundation
- Research to Prevent Blindness

Thank you.